

Importance of Correctly Specifying Measurement Instrument Transformers

Frans Shanyata | Senior Engineer: Projects and Multidisciplinary 13 March 2025 Swakopmund, Namibia, AEDU

Importance of Correctly Specifying Measurement Instrument Transformers

Definition of Instrument transformer (IEC61869 -1, 2007)

• Transformer intended to transmit an **information signal** to measuring instruments, meters and protective or control devices or similar apparatus

Why correctly specifying?

- \circ $\,$ To reduce loss of revenue
- \circ $\,$ To avoid disputes with customers
- Manage equipment cost (total cost of ownership)
- Accurate measurement (PQ, etc)

Important Parameters when Specifying Instrument Transformers

Current Transformers

- Accuracy class
- o Ratio
- \circ Burden
- Number of cores
- o Security factor

Voltage Transformers

- \circ Accuracy class
- o Ratio
- o Burden
- Number of windings/loaded windings
- Voltage factor

Overview of IEC61869-2 Requirements

(Current transformer requirements)

Standard Accuracy class	The standard accuracy classes for measuring current transformers are: $0,1 - 0,2 - 0,2S - 0,5 - 0,5S - 1 - 3 - 5$
	For Class $0,1 - 0,2 - 0,2S - 0,5 - 0,5S - 1$: Ratio error and phase displacement at rated frequency valid in the range 25 % to 100 % of the rated Burden.
Standard Rated Burden	The standard values of rated output: $2.5 - 5.0 - 10 - 15$ and 30 VA. Values above 30 VA may be selected to match the application.
Security Factor, FS	Standard Values : FS5 & FS10 For preventing secondary device from damage, the core should go into saturation in case of an overcurrent. Saturation of the core is indicated through a deviation of the rated secondary current of at least 10 %. The initial overcurrent value is described through the security factor FS, i.e. overcurrent \geq FS * rated primary current.

Ratio Error Comparison (0.2 vs 0.2S class)

Accuracy class			Ratio Error					
	% of rated current							
	1	5	20	100	120			
0.2	NA	0.75	0.35	0.2	0.2			
0.2S	0.75	0.35	0.2	0.2	0.2			

Consider a 33kV three phase variable load/source operating between 40MW and 500kW. Minimum load current = 8.75A, Max load current = 699.82A, CTR = 700/1

- At 500kW, the load current is 1.25% of the CT rated current (8.75/700)x100%, If 0.2 class is used, then measurement errors are not guaranteed. Class 0.2S guarantee measurement error of 0.75% in this case.
- ➤ At 10MW, 0.2 class CT gives 0.35% measurement error vs ≤0.2% error from 0.2S

Ratio Error Comparison (Continue...)

10MW at 0.35% error vs 10MW at 0.2% error over a life span of the installation (25 years) at N\$1.80/kWh for 10hrs a day produces a loss of N\$2 463 750.00 (excluding price escalation)

If yearly price adjustment of 4% is considered, then the losses incurred will be N\$ 4 102 204.00. (Assuming all other requirements are met and the VTs measurement errors are within limits).

Overview of IEC61869-3 Requirements

(Voltage Transformer requirements)

Standard Accuracy Class	The standard accuracy classes for single-phase inductive measuring voltage transformers are: $0,1 - 0,2 - 0,5 - 1,0 - 3,0$
Standard Rated Output	 Two Burden ranges are defined: Burden range I: 1.0 – 2.5 – 5.0 - 10VA - defined at power factor of 1. Burden range II: 10 - 25 - 50 - 100 VA - defined at a power factor of 0.8 lagging

Limits of voltage error and phase displacement

- 80 -120% of rate Voltage
- For Burden range I: 0 -100% of rated burden, at unity pf

 \circ For Burden range II: 25 -100% of rated burden at pf = 0.8 lagging Ensure that the limits above are observed during FAT and SAT for correct assessment of test results.

Overview of IEC61869-3 Requirements (Continue...)

Accuracy class	Voltage(ratio)	Phase displacement			
	error	± Minutes	±Centiradians		
	±%				
0.1	0.1	5	0.15		
0.2	0.2	10	0.3		
0.5	0.5	20	0.6		
1.0	1.0	40	1.2		
3.0	3.0	Not specified	Not specified		

Operating vs Rated Burden

- As discussed above, Accuracy for burden range II voltage transformers is defined at 25 -100% of rated burden. Meaning operating burden must fall within the defined range to guarantee accurate measurement.
- A pass test result ≠ Accurate measurement during operation .For example: Consider a class 0.2 winding with 100VA rated burden , supplying a 5VA load (metering circuit). Pass test results obtained at 25 & 100% of the rated burden. However, this can result in high measurement errors and incorrect billing due to too low operating burden.
- Always consider expected operating burden when specifying voltage transformers rated burden
- Also confirm accuracy at low burden during FAT and SAT i.e at 2 25 % of rated burden, especially for stock equipment.

Operating vs Rated Burden (Continue...)

Model			VT Туре				XXXXXXXXX					
Rated primary voltage [V]			33000/√3		Serial number			XXXXXXXX				
Applied standard			EC 61869-3		Measurement saving time			2024-03-19, 13:44:11 AM				
Rated frequency [Hz]				50.00 Firmware versio			version	2.31 SR 1 (1165) 2023-06-16 13:43				
Fv				1.2								
Winding	Rat	ed sec. volta	ge [V]	Clas	ss	M-0	Class	Nom. I	Burden [VA]/cosφ	o assessment	
1a-1n		110/√3		3P)	0).2		100/0.8		Failed	
2a-2n		110/√3				0).2		100/0.8	Failed		
Overview of ratio er	rors and ph	ase displace	ments									
					Burden				_	_		
	Upr	Usr	S1	S2	S3	S4	S5	U		Ratio ei	rror	Phase error
Winding	[V]	[V]	[VA]	[VA]	[VA]	[VA]	[VA]	[%]		[%]		[min]
1a-1n	33/√3	110/V3	100/0.8					80%		C).1552	-1.32
								100%		C).1464	-1.15
								120%		C	0.0822	0.02
			25/0.8					80%		C	0.3530	-0.80
								100%		C	0.3441	-0.63
								120%		C).2790	0.55
			100/0.8	100/0.8				80%		-0	0.0086	-3.16
								100%		-C	0.0172	-3.00
								120%		-C	0.0802	-1.85
			25/0.8	100/0.8				80%		C).1887	-2.64
								100%		C	0.1800	-2.48
								120%		C).1161	-1.32

Challenges

- Variable loads/generation
- > Inverter based resources.

Conclusion

- Burden is important. Always calculate the expected operating burden and ensure that it is falling within the recommended range of the rated burden for accuracy.
- ➤ A pass test result ≠ Accurate measurement during operation . Always confirm the accuracy at expected operating burden.
- Reduce revenue loss and avoid disputes with customers by correctly specifying measuring instrument transformers
- Find a balance between equipment cost/capital investment and cost of ownership

Thank you!